SNS (Linac) Experience

ESS-Bilbao Initiative Workshop March 16-18, 2009

J. Galambos on behalf of the SNS Team

SNS: Started as a Greenfield Site

The SNS Partnership Experience

intellectual ownership of the accelerator

Commissioning Timeline – Start as Early as Possible

- Early commissioning campaigns helped integration of new systems (controls, timing, diagnostics, software applications, ...)
- Less time was available for latter stages than originally planned

Rapid Increase in Power and Fluence

 Doubling the integrated power delivered to the Target, over the last several run-cycles

RFQ

- 3.5 m
- 2.5 MeV output
- 402.5 MHz

- 2 frequency "detuning" incidents
- Duty factor operated at ~ 4%, need to get 6%
- Managed by UT- (working on this now) for the U.S. Department of Energy

Drift Tube Linac

- ·37 m
- 87 MeV output
- 6 Tanks
- •210 drift tubes
- PM quadrupoles
- 2.5 MW klystrons (402.5 MHz), 1 per tank

- Experience with PM quadrupoles is fine
- Minimal beam loss / activation observed

Coupled Cavity Linac

- 55 m
- 186 MeV output
- 4 modules
- 48 segments
- •5 MW klystrons (805 MHz), 1 per module

CCL is also a robust structure

- Issues with RF induced gate-valve failures
- Some beam loss near the CCL entrance and exit

Superconducting Linac

- SCL accelerates beam from 186 to 1000 MeV
- SCL consists of 81 cavities in 23 cryomodules
- Two cavities geometries are used to cover broad range in particle velocities
- Operate at 2.1 K
- 81 klystrons (805 MHz, 500 kW)
 - SCL is flexible
 - Issues with accessories (HOM couplers, piezo tuners, ...)
 - Unexpected low level of beam loss

SCL Gradients – large scatter

- Cavity gradients settings are not uniform nor constant
- Relative to design, the medium β cavities over-perform, high β cavities underperform
- Overall we have ~ 7% less energy gain than design
- Need tools to allow flexible setup (840 1010 MeV)

Linac Energy Limiting factor (I)

- Collective limits require operating cavities 20-25% below the "ideal" individual limits
- We are starting a plasma processing campaign to increase operational gradients

- Cavity performance limits
 - Field emission (major limiting factor)
 - Coupler heating

Linac RF Layout

402.5 MHz, 2.5 MW klystron

- Warm linad has 10 independently powered cavities
- SCL has 81 independently powered cavities
 - Many values to set w.r.t. the beam
- A lot of Equipment to keep running!!!

Warm Linac Longitudinal Beam Setup

- Each cavity has a unique response (signature) to phase and amplitude scans
- •Phase scan signature matching method uses model to match measurements and determine RF amplitude and phase setpoints

- Large phase advance (longitudinal) and energy gain per accelerating structure
- Single correct RF phase and amplitude setting

SCL Longitudinal Beam Setup

- Small $\delta \beta$ and small longitudinal phase advance per cavity
 - Close to ideal RF gap kick easy to understand the RF relationship with the beam
- No absolute correct setting for each cavity!
 - Set each cavity amplitude for the maximum safe gradient
 - Flexibility in the RF phase setup

Superconducting Linac RF Setup

- Model based predictions of the change in the downstream RF setup based on changes in upstream RF amplitude and/or phases are possible
 - Use the change in predicted arrival time
 - Quickly recover from upstream RF changes
- Introduces many possibilities
 - The SCL can be viewed as a collection of infinitely programmable RF kicks

Application of the Cavity Fault Recovery Scheme (I)

- In the spring 2006, 11 cavities had to be either turned off or have their amplitudes reduced for safe operation, 1 cavity was returned to operation
- The fault recovery scheme was applied "all at once"
- Phase scan spot checks indicate the scaling was within 4 degrees
- Modetectable change in beam loss

SCL Acceptance Measurement *(Y. Zhang)*

Consider this part of the scan

- Can calculate the longitudinal acceptance space for the SCL linac
- Using scaling techniques one can perform scans across the phase space and measure transmission

Measured SCL Acceptance

Create an acceptance measurement from the scans

A Closer Look at a Phase Scan (courtesy Y. Zhang)

- Scan the beam phase for a constant input beam energy
 - Measure the transmitted beam current (core beam)
 - Measure the Beam Loss (halo indicator)

Total Expected Beam Loss & Hottest Expected Spot Meet Requirement

Linac Beamloss Study

Linac Beam Loss Predictions

- Some beam loss possible in DTL / CCL
- No beam loss predicted in the SCL

CCL losses and activation

Prompt radiation due to beam loss

Residual activation @ 1ft after ~ 48h

- Two major loss sources
 - Longitudinal at DTL/CCL transition
 - Transverse at the CCL end
 - Hot spot at CCL406 is very unusual. Stripping on residual gas is suspected
- Mitigation measures
 - Stronger longitudinal focusing in MEBT (will install new RF amplifiers)
 - Additional dipole correctors in CCL (under consideration)
 - Modified transverse optics in CCL4 (under study)

SCL Beam Loss

Beam Loss = $\int \frac{\text{beam loss signal}}{\text{beam power on target}} dt$

over 3 week run

- Loss pattern is rock-solid
- Different longitudinal phase laws, transverse lattices, ...

SCL Residual Activation – End of Run Cycles

- Activation is not increasing proportional to the amount of beam transmitted
- SCL activation = average of all the warm section hot-spot readings

- SCL residual activation builds up quickly during a run cycle
- Contrast to Ring activation buildup, which is more steady

SCL Residual Activation has a Faster Initial Decay

- Suggests the presence of a short-lived "contaminant"
- We are planning additional gamma-spec measurements to identify material compositions
- In any case there is beam loss throughout the SCL, which is clearly measureable

SCL Beam Loss Magnitude

Single electron laser stripping is used for profile measurements in the SCL

- Using this to calibrate the BLM, < 5x10⁻⁶ beam lost at the highest loss point in the SCL during production
- Consistent with previous estimates from controlled loss spills, ~ 2x 10⁻⁶ per warm section (+ factors of 2-4)
- Activation of < 100 mrem/hr @ 1 ft after 12 hrs, scales with < ~ 1 W/m or < 2x10⁻⁶ beam loss/warm section

Upstream SCL Beam Loss Influenced by

- SCL Beam loss tracks CCL4 vacuum
- Upstream SCL losses strongly influenced by gas stripping
- From SCL10 downstream, relatively weak effect

SCL Beam Loss with Local Bump

Bump (beam displacement) is local between sections 22-25

- Possible causes of enhanced loss
 - **R**₽
 - Magnetic stripping
 - Off energy beam

SCL Beam Loss with Reduced Quad Strength

- Clear reduction in downstream beam loss
- Better transmission of off-energy beam?

Equipment Robustness / Reliability

- High Voltage Convertor Modulator (HVCM) component lifetimes
 - Creates the DC 60 Hz pulse forms using solid state technology
- Component lifetimes
 - New technology, minimal experience base

Chopper Issues

- Design is for 2 stage chopping
 - LEBT (slow) + MEBT (fast)
- MEBT structure + power supplies had issues
 - First used in summer 2008
- LEBT chopper electronics sensitive to sparks

Summary

- SNS: 6-7 year construction project
- After ~2 years of operation, ~ 700 kW beam power, 80% availability
- Some growing pains
 - Implementations of complicated/new technologies expect surprises
 - We have low levels of beam loss where we did not expect it, not loss limited (yet)
- Gained some experience with the technologies and integrating issues of building, installing, commissioning and operating a high power linac.

Summary (II)

 ESS is considering construction, commissioning and operation of a high power linac at a "green-field" site

Hard to predict everything

Ring Injection Loss correlated with RFQ resonance error

Expect the unexpected

SNS Accelerator Complex

SNS Performance Relative to Design

	Design	Best Ever	Routine Operation
Kinetic Energy [GeV]	1.0	1.01	0.87
Beam Power [MW]	1.4	0.69	0.69
Linac Beam Duty Factor [%]	6%	3.6	3.6
Modulator/RF Duty Factor [%]	8%	5.4	5.4
Peak Linac Current [mA]	38	40	38
Average Linac Current [mA]	1.6	0.8	0.8
Linac pulse length [msec]	1.0	1.0	0.6
Repetition Rate [Hz]	60	60	60
SRF Cavities	81	76	76
Ring Accumulation Turns	1060	1020	620
Peak Ring Current [A]	25	22	13
Ring Bunch Intensity	1.5x10 ¹⁴	1.3x10 ¹⁴	8.1x10 ¹³
Ring Space Charge Tune Spread	0.15	0.18	0.11

